

#### Hochschule Merseburg Eberhard-Leibnitz-Straße 2

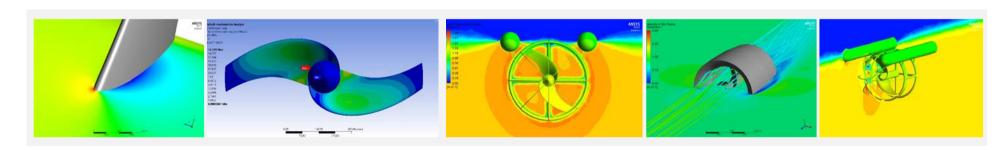
06217 Merseburg



Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 1


## Innovative Wasserkraftmaschinen

# **Hydrokinetische Turbinen**

Prof. Dr.-Ing. Heike Mrech

M. Sc. Stephan Trautsch

**Hochschule Merseburg** 







Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 2

## **Hydrokinetische Turbine**

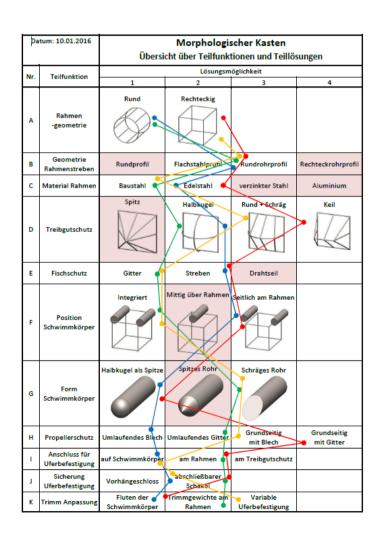
## **Vorteile:**

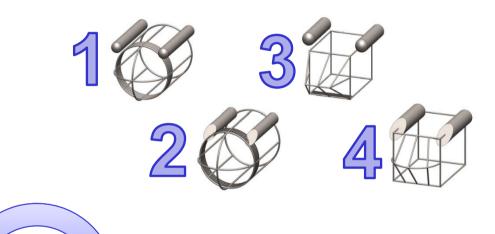
- Nutzung von Flüssen und Strömen mit Fließgeschwindigkeiten von c=1,1 m/s bis c=3,5 m/s (momentan weitestgehend ungenutzt)
- Nutzung ohne Staustufe
- Umwelt- und fischfreundlich
- Keine aufwendigen Wasserbauwerke notwendig
- Flexibel einsetzbar und hohe Mobilität.
- Standortspezifischer Rotordurchmesser (maximale Leistungsausbeute)
- Einsatz von Einzelturbinen oder auch Kaskadenanordnung
- Geringer Fertigungs- und Wartungsaufwand





Eberhard-Leibnitz-Straße 2 06217 Merseburg





Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 3

## **Hydrokinetische Turbine**





| Datum: 19.01.2017<br>Bearb.: Müller, M.<br>Blatt: 1/3 | technisch - wirtschaftliche Bewertung |      |      |      |
|-------------------------------------------------------|---------------------------------------|------|------|------|
| Technische Merkmale                                   | Konzept                               |      |      |      |
|                                                       | Blau                                  | Grün | Rot  | Gelb |
| Umformarbeiten                                        | 2                                     | 2    | 3    | 4    |
| Montageaufwand                                        | 3                                     | 2    | 3    | 3    |
| Transport + Installation (0,5)                        | 3                                     | 3    | 4    | 4    |
| Gewicht (geschätzt) (0,5)                             | 2                                     | 3    | 2    | 4    |
| Summe:                                                | 7,5                                   | 7    | 9    | 11   |
| Wirtschaftliche Merkmale                              | Konzepte                              |      |      |      |
|                                                       | Blau                                  | Grün | Rot  | Gelb |
| Aufwand Entwicklung (0,5)                             | 4                                     | 2    | 3    | 4    |
| Materialkosten                                        | 2                                     | 3    | 2    | 3    |
| Zuverlässigkeit                                       | 3                                     | 3    | 2    | 3    |
| Instandhaltung                                        | 4                                     | 3    | 4    | 3    |
| Einfachheit                                           | 3                                     | 2    | 3    | 4    |
| Summe:                                                | 14                                    | 12   | 12,5 | 15   |

4=sehr gut || 3=gut || 2= ausreichend || 1= ungenügend

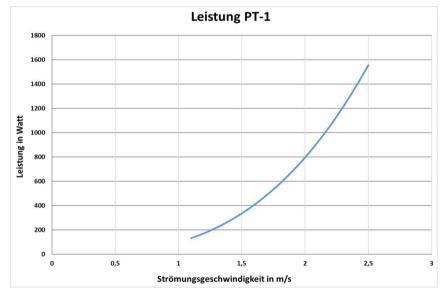




Eberhard-Leibnitz-Straße 2 06217 Merseburg



Magdeburg, 27.09.2018


Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 4

## **Hydrokinetische Turbine**

# HKT - PT1





Durchmesser: 780 mm

Rotorzahl z:

Drehzahl n: 120 U/min Anströmgeschw. c: 1,1 – 2,5 m/s Leistung P: 133 – 1557 W

Gewicht m: 358 kg

Material: Gehäuse (Stahl) / Rotor (GFK)





Eberhard-Leibnitz-Straße 2 06217 Merseburg



Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 5

## **Hydrokinetische Turbine**

# HKT – PT2





Durchmesser: 900 mm

Rotorzahl z: 2

Drehzahl n: 120 U/min Anströmgeschw. c: 1,1 – 2,5 m/s Leistung P: 165 – 1935 W

Gewicht m: 179 kg

Material: Gehäuse (Stahl) / Rotor (GFK)







Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 6

## **Experimentelle Untersuchung beider Prototypen**



• Der VECTOR dient als zentrale Versuchsbasis für alle denkbaren Wasserräder und Rotoren.

 HKT Prototyp 1 montiert am Versuchsträger VECTOR im Dezember 2016 im Elbe-Havel-Kanal bei der Firma SIBAU in Genthin





 Sowohl Prototyp 1 als auch Prototyp 2 wurden von der Formstaal GmbH & Co. KG in Stralsund gefertigt.








Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 7

## **Experimentelle Untersuchung beider Prototypen**



- Erster Strömungssensor außerhalb der Turbine zur Bestimmung der Strömungsgeschwindigkeit im Fluss
- Zweiter Strömungssensor direkt vor dem Rotor (hinter dem Fischrechen)
- Drucksensoren vor und nach dem Rotor zum Erfassen der Druckdifferenz



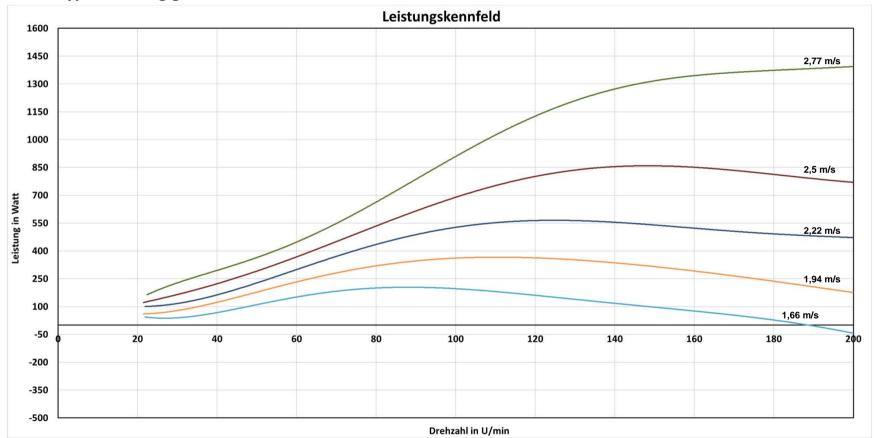


 Beleuchtung und Kamera zur Dokumentation des Strömungsgeschehens



Eberhard-Leibnitz-Straße 2 06217 Merseburg




Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 8

## **Experimentelle Untersuchung beider Prototypen**

#### **Prototyp 1 Leistung gemessen:**







Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 9

## **Experimentelle Untersuchung beider Prototypen**

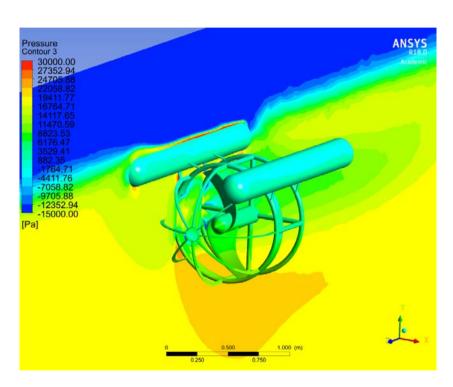


- Schwimmkörper halten die Turbine knapp unter der Wasseroberfläche
- Signalfarbe und/oder Positionslichter werden zukünftig die Sichtbarkeit für andere Wasserfahrzeuge verbessern

- Waagerechte Lage im Wasser wird garantiert
- So wird eine optimale Anströmung der Rotorschaufeln ermöglicht und die größtmögliche Leistung generiert

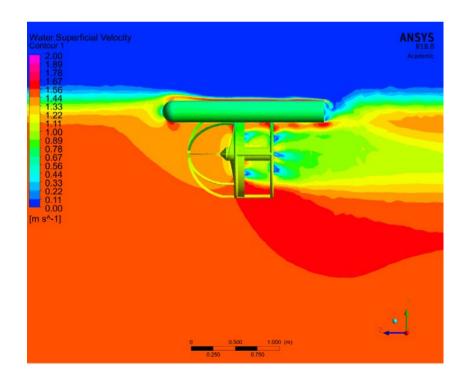







Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch


Seite 10

## **Nummerische Strömungssimulation**



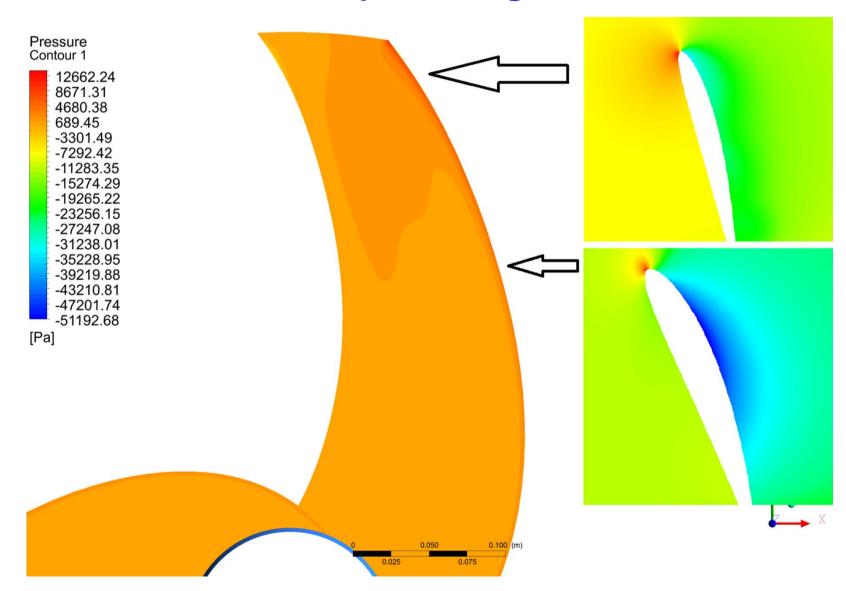
- Schwimmfähigkeit
- Betriebsverhalten
- Materialbelastung

- Leistung und Drehzahl resultierend aus Anströmgeschwindigkeit und Geometrie
- Axialbelastung → Verankerung





Eberhard-Leibnitz-Straße 2 06217 Merseburg




Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

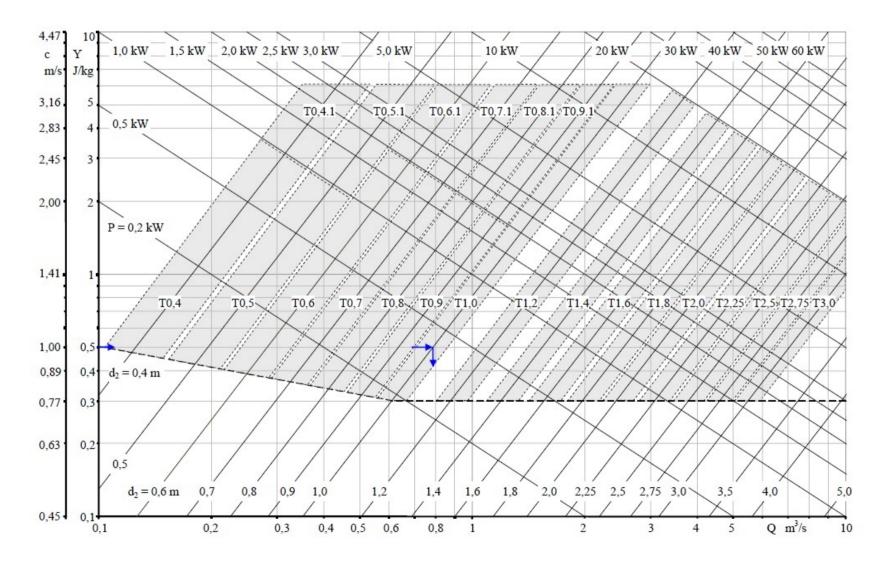
Seite 11

# **Optimierung**





Eberhard-Leibnitz-Straße 2 06217 Merseburg




Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 12

## **Turbinenkennfeld**







Eberhard-Leibnitz-Straße 2 06217 Merseburg



Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 13

## **Fazit**

- Theoretische Grundlagen konnten durch das Anlagenkonzept bestätigt werden
- Kontinuierliche Energieentnahme ist möglich
- Hohe Mobilität und Finsatzflexibilität
- Einspeisung in ein ausgebautes Stromnetz ist nur bedingt sinnvoll
- Energieversorgungskonzept:
  - für abgelegene Regionen ohne Anbindung an ein Stromnetz
  - für Entwicklungsländer
  - einfache Installation ohne bauliche Maßnahmen
  - Transportfähigkeit auch bei nicht ausgebauten Straßennetzen gegeben









Eberhard-Leibnitz-Straße 2 06217 Merseburg



Magdeburg, 27.09.2018

Autoren: Prof. Dr.-Ing. Heike Mrech M.Sc. Stephan Trautsch

Seite 14

# Vielen Dank für Ihre Aufmerksamkeit!