ÖKOZERT

Entwicklung eines multisensorischen Analysesystems für ein multikriterielles Fischmonitoring

Dr.-Ing. Andreas Herzog,
Sebastian Warnemünde
Fraunhofer -Institut für Fabrikbetrieb
und -automatisierung IFF, Magdeburg

Prof. Dr. Konrad Thürmer Institut für Wasserwirtschaft, Siedlungswasserbau und Ökologie (IWSÖ), Weimar ÖkoZert VP 6

Magdeburg, 27. September 2018

GLIEDERUNG

- 1. Einleitung
 - Projektziel
- 2. Zusammenfassung entwickelte Komponenten im Baukastensystem
 - Hardware (Kostenstaffelung)
 - Kamerasysteme, Beleuchtungssysteme, Datenaufzeichnung
 - Mechanischer Aufbau, Kalibrierung
 - Software (online, offline, Cloud)
 - Bildanalyse
 - Training, Erstellen von Trainingsdaten
- 3. Einsatztests
 - Hydrolabor, Feld
- 4. Fazit

Projektziel

Multisensorischen Analysesystem für ein multikriterielles Fischmonitoring

- Unterschiedliche Szenarien es Einbaus
- Unterschiedliche Laufzeiten
- Nicht ein geschlossenes System entwickeln, sondern eine Baukastensystem

Kamera

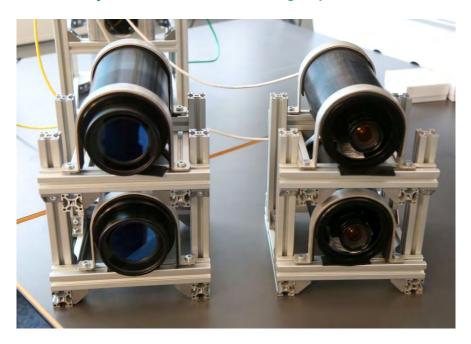
- Mono/Stereo
- Auflösung
- Geschwindigkeit
- Kabel/Akku

Beleuchtung

- Vorne
- Hinten
- Oben
- Kombination

Auswertung

- Online/Offline
- Speicherung
- Interaktion
- Pipeline


Anpassung an Standortbedingungen und Kosten

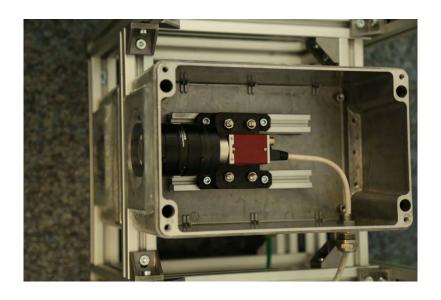
Kamerasysteme, Beleuchtungssysteme, Datenaufzeichnung

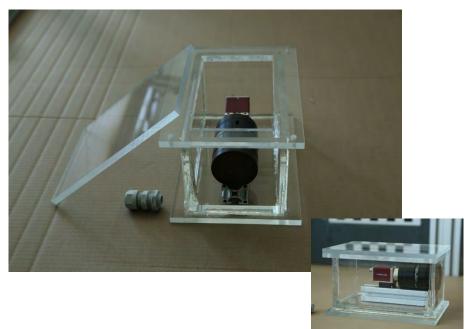
Als Block verschraubt und als Stereopaar zusammen kalibriert

Kamera + Objektiv:

- High End 3000EUR
- Mitte 1000 EUR
- Low 500 EUR Gehäuse:
- 200 m (1000 EUR)

- Kameras im professionellen UW Gehäuse (200m)
- Pro Kamera ein Kabel (Ethernet, Stromversorgung über Ethernet)
 - Farbe (2048 (H) x 2048 (V) Bildpunkte mit 5,5 μm Pixelgröße)
 - Infrarot (2048 (H) x 2048 (V) Bildpunkte mit 5,5 µm Pixelgröße)
 - Farbe lichtstark mit IR Anteil (Überwachungskamera, 1920x1080 Pixel)





Hardwarekomponenten

Kamerasysteme, Beleuchtungssysteme, Datenaufzeichnung

- Selbstbaugehäuse (IP65 Schaltkasten, Plexiglas)
 - innen Schienensystem für verschiedenen Kameratypen
 - Platz für zusätzliche Sensoren (Temperatur, ph, ...)
 - Test in der Elbe und Pool (überstanden)

Gehäuse:

- Metall (150 EUR)
- Plexiglas (40 EUR)

Hardwarekomponenten

Kamerasysteme, Beleuchtungssysteme, Datenaufzeichnung

Kamera + Gehäuse: 50 EUR- 500 EUR

GoPro

- Wasserdichte kabellose Actionkamera,
- Stereobetrieb schwierig
- Batterie hält ca. 1,5h oder Kabellösung

Hardwarekomponenten

Kamerasysteme, Beleuchtungssysteme, Datenaufzeichnung

Kamera + Gehäuse + Minirechner:

150 EUR

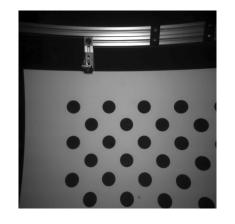
- Eigenbau
 - Wasserdichte Klickgehäuse,
 - Onchip Kamera,
 - Minirechner (Raspberry Pi),
 - Speicher lokal oder Versenden über Netzwerk

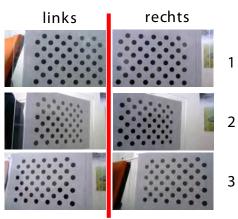
Hardwarekomponenten

Kamerasysteme, Beleuchtungssysteme, Datenaufzeichnung

- Linienlichter, Rundlichter
 - Farbe / Infrarot
 - Lichtstärke regelbar
- Spektralbeleuchtung
 - Spektrum regelbar (20 Kanälen)

Eluss-Str⊗i

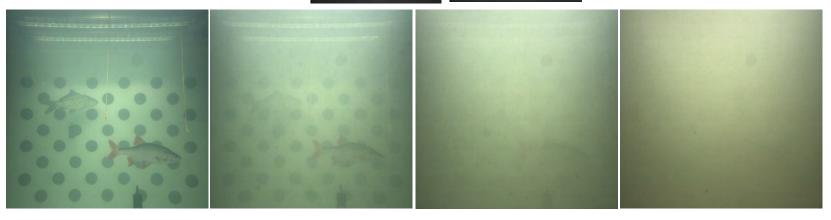

Hardwarekomponenten


Mechanischer Aufbau, Kalibrierung

- Mechanische Befestigungen
 - Stangenprofile (Bosch) 30x30mm
 - Standardlängen definiert 25, 50, 75, 100 cm
 - Verbindungsteile
 - Ecken, Winkel, Platten
 - Scharniere, Klemmhebel
 - Griffe
 - Variabel, schnell auf- und abbaubar
- Kalibrierung der Kamerasysteme
 - Synchrone Bildaufnahme im Echtzeitsystem OK
 - Wasserfeste Kalibriervorlagen

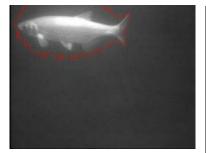
Eluss-Str ≈

Genereller Ablauf der Bilderkennung mit verschieden entwickelten Algorithmen.



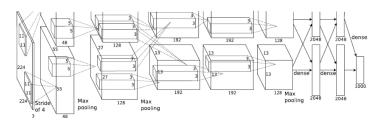
Softwarekomponenten

Trübung mit Sand, Hydrolabor


- Bessere Algorithmen,
- Adaptive Beleuchtung, Online Adaption (nach Regeln, Pptimierungsbedarf)

- Eigenschaften Bestimmen (Größe, Form, Maske)
- Eigenschaften müssen interpretierbar sein!
- Regeln aufstellen

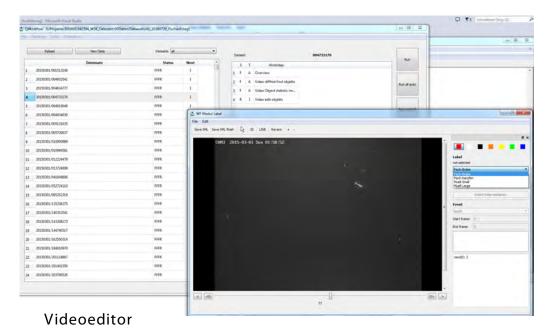
- Eigenschaften Bestimmen (Größe, Form, Maske)
- Eigenschaften können abstrakt sein
- Training des Klassifikators mit Beispielen
- (Beispiel: Gesichtserkennung in der Kamera)



Tensor Flow (Google)

Problem:

- Große Rechenleistung (GPU, Cloud)
- Benötigt sehr viele Daten



Bilderkennung Fisch - Fischart

77 Objekte

1.923 Objekte

87 Objekte

Aland	925 Objekte
Barsch	1.019 Objekte
Brasse	497 Objekte

Aesche

Elritze

Hecht

- Forelle 879 Objekte
- Koppe 237 Objekte
- Quappe 335 Objekte
- Weißfisch 287 Objekte

- Erzeugung Trainingsdaten,
 - Test: Videoeditor, Verzeichnisbaum
 - Training auf Rechnern mit großer Grafikkarte
 - Recall als Service (Dogger)

Verwenden vortrainierter Netzwerke (allgemeine Bilder)

- Millionen Bildern, 10.000 h Rechenzeit
- Nur letzte Schichten mit spezifischen Bildern neu trainieren
- Wenige Stunden Rechenzeit
- Final test accuracy = 89.3 % (Validierung auf 5 Prozent vor dem Training extrahierter Bilddaten)

bio@vm-u16-10-lts:~/Tensorflow/example_code\$ python label_image.py --graph=/home/bio/TensorFlow/fishcam_m odel/output_graph.pb --labels=/home/bio/TensorFlow/fishcam_model/output_labels.txt --input_layer=Placehol der --output_layer=final_result --image=/home/bio/TensorFlow/fish_photos_recall/Aland1.jpg RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb aland 0.919674 forelle 0.0600507 brasse 0.0120462 aesche 0.00333213 wei fisch 0.00234793

Beispiele: Erkennung

Eluss-Sti


```
bio@vm-u16-10-lts:~/Tensorflow/example_code$ python label_image.py --graph=/home/bio/TensorFlow/fishcam_m
odel/output graph.pb --labels=/home/bio/TensorFlow/fishcam model/output labels.txt --input layer=Placehol
der --output layer=final result --image=/home/bio/TensorFlow/fish photos recall/Brasse1.jpg
RuntimeError: module compiled against API version Oxc but this version of numpy is Oxb
RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb
brasse 0.721183
aland 0.226672
forelle 0.0299865
hecht 0.013624
aesche 0.00331014
```

Beispiele: Erkennung

bio@vm-u16-10-lts:~/Tensorflow/example_code\$ python label image.py --graph=/home/bio/TensorFlow/fishcam m odel/output graph.pb --labels=/home/bio/TensorFlow/fishcam model/output labels.txt --input layer=Placehol der --output_layer=final_result --image=/home/bio/TensorFlow/fish_photos_recall/Brasse1.jpg RuntimeError: module compiled against API version Oxc but this version of numpy is Oxb RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb brasse 0.721183 aland 0.226672 forelle 0.0299865 hecht 0.013624 aesche 0.00331014

Beispiele: Erkennung

Eluss-St

bio@vm-u16-10-lts:~/Tensorflow/example_code\$ python label_image.py --graph=/home/bio/TensorFlow/fishcam_m odel/output graph.pb --labels=/home/bio/TensorFlow/fishcam model/output_labels.txt --input_layer=Placehol der --output layer=final result --image=/home/bio/TensorFlow/fish photos recall/Forelle1.jpg RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb forelle 0.905567 aland 0.0514944 brasse 0.0368364 aesche 0.00479049 hecht 0.00059357

Beispiele: Erkennung

Unbekanntes Bild

bio@vm-u16-10-lts:~/Tensorflow/example_code\$ python label_image.py --graph=/home/bio/TensorFlow/fishcam_m odel/output graph.pb --labels=/home/bio/TensorFlow/fishcam model/output labels.txt --input layer=Placehol der --output layer=final result --image=/home/bio/TensorFlow/fish photos recall/Google Hecht1.jpg RuntimeError: module compiled against API version Oxc but this version of numpy is Oxb RuntimeError: module compiled against API version Oxc but this version of numpy is Oxb hecht 0.571923 aland 0.304092 aesche 0.0353855 barsch 0.027936 forelle 0.0194967

Beispiele: Erkennung

Softwarekomponenten

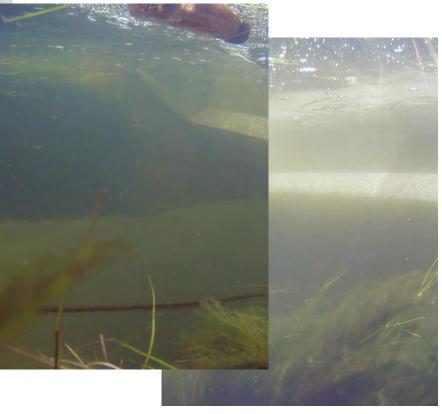
bio@vm-u16-10-lts:~/Tensorflow/example_code\$ python label_image.py --graph=/home/bio/TensorFlow/fishcam_m
odel/output_graph.pb --labels=/home/bio/TensorFlow/fishcam_model/output_labels.txt --input_layer=Placehol
der --output_layer=final_result --image=/home/bio/TensorFlow/fish_photos_recall/Rotfeder.jpg
RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb
RuntimeError: module compiled against API version 0xc but this version of numpy is 0xb
aland 0.75941
hecht 0.0829679
aesche 0.0687819
forelle 0.0638387
barsch 0.00926467

Beispiele: Erkennung



Eluss-Str∞m

Einsatztests (Bode)



Einsatztests (Bode)

Eine Woche Aufzeichnung

Einsatztests (Bode)

Hydrolabor SChleusingen

Fazit

- Baukastensystem
 - Hardware (Kameras, Beleuchtung, Befestigung, Speicherung)
 - Software (Objekterkennung, Bilderkennung)
 - Adaption an Umgebungsbedingungen

Danke für die Aufmerksamkeit

gefördert durch

