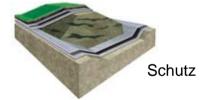


S. Gimpel, Dr. W. Scheibner, N. Grawitter, H. Schaarschmidt


Geotextilien

Flächige oder dreidimensionale Textilien, meist wasserdurchlässig Baustoff im Bereich des Tief- Wasser- und Verkehrswegebaus und sind für geotechnische Sicherungsarbeiten ein wichtiges Hilfsmittel

Anwendungen:

- Erosionsschutz
- Filtern
- Bewehren
- Schützen
- Dränen
- Trennen

Filtern

Drainage

Quelle: Fibertex

Schlauchwehre

Schlauchwehr am Fluss Sebgad (Algerien)

Quelle: Fa. RUBENA

selbstregulierendes Wasserreservoires für die Bewässerung der landwirtschaftlichen Flächen in den Regionen unter dem Wehr

Breite: 50 m Höhe: 3 m

Volumen: 5 Mill. m³ Wasser Material: Gummitextilmembran

Uferbefestigung

Sedimentationskassetten

Böschungsband aus robusten Kokosfasergewebe

Quelle: http://www.recultex.de/boeschungsband.htm

Sensorbasierte Geotextilien für das Deichmonitoring

Sensorgitter zur Überwachung von Böschungsbewegungen

Test des Monitoringsystem

Die textile Fläche wird im Deich vergraben, wo die eingearbeiteten Sensoren die Bewegung registrieren und an eine Messstation weiterleiten.

Solina-Stausee (Südpolen)

Prüfstand für sensorische Geokunststoffe STFI, Chemnitz

Quellen: https://www.tu-chemnitz.de/tu/pressestelle/aktuell/2119?layout=1&aid=2119

Schlauchdamm als Hochwasserschutz

Dämmelemente werden mit Luft gefüllt und leicht in die gewünschte Position gebracht. Anschließend werden die Schläuche mit Wasser gefüllt.

Schlauch: PES Gewebe, PVC beschichtet

Quelle: https://www.beaver-ag.com/

2018 TITV Greiz

Strömungsversuchs-

stand Zick-Zack-Matte

Erosionsschutzmatte für Entwässerungsgräben

- Geotextilmatte zur Befestigung von Entwässerungsgräben
- sticktechnische Individualisierung von Dimension und Geometrie
- problemlose Anpassung an die Geländemorphologie
- Minimierung der Transportaufwendungen
- Schonung von Ressourcen durch geringen Verbrauch von Steinen etc.
- vergleichbare Leistungsfähigkeit wie Steinschüttungen

Feldversuch Zick-Zack-Matte

Feldversuch Schotter

Rohrsanierung durch Inliner

- Durch sticktechnisch strukturierten Rohrinnenoberflächen wird der Abtrag von Feststoffen im Abwasser- bzw. Kanalnetz beschleunigt und eine erneute Sedimentation verhindert.
- effektive Verwirbelungen durch Strukturkörper zum verbesserten Medientransport

Stickprozess

Profil der gestickten Struktur

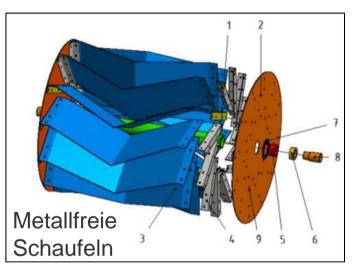
Gestickter Inliner im Abwasserkanal

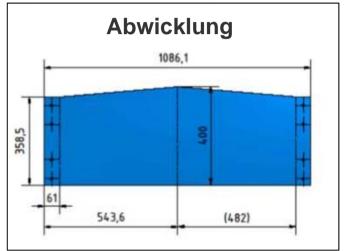
Textile Schaufeln für Wasserrädern

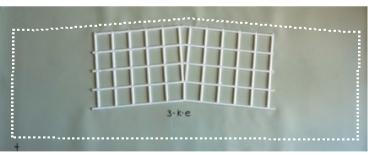
Projekt: Staudruckwasserrad (uSW)

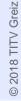
Formgebung der Metallschaufeln ist Optimierungsproblem für variierende Strömungen

Textile Schaufel - die Form und Oberflächenprofil in Abhängigkeit von den Strömungsbedingungen ändern

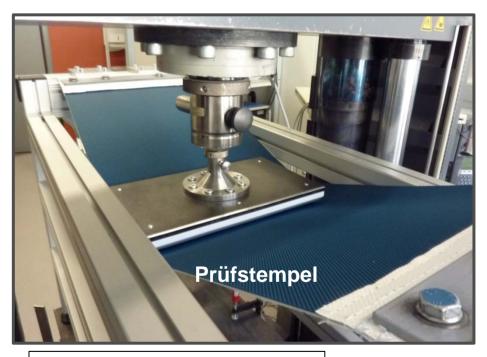

- Selbsttätige Formanpassung
- Optimale Energieausbeute
- Geringe Masse / hohe Festigkeit
- Kleinere Baugröße bei gleicher Leistung
- Geräuschminderung
- Weniger Korrosion

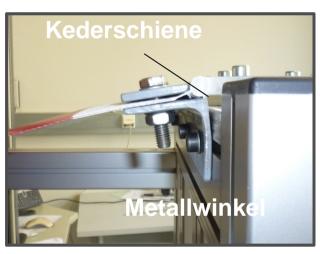



Geometrien der Textilien für Wass



Steifigkeitsgradienten und Oberflächenprofilierung am Textil




Simulation der Druckbelastung

Entwicklung eines Prüfstandes für textile Schaufeln

PES Gewebe/ PVC beschichtet 5600 g/m² Zweiseitiger Reparaturkeder Nahtverbindung Lochung im Keder

Vorkraft: 200 N

Vorkraft-Geschwindigkeit: 300 mm/min

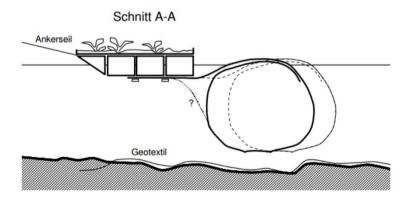
Prüfgeschwindigkeit: 500 N/s

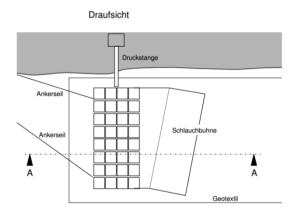
obere Kraftgrenze: 15 kN

© 2018 TITV Greiz

Test Prototyp mit Textilschaufel

Standort des Staudruckwasserrades: Rübeland/ Harz


Textile Buhne



Projekt: Textilstrukturen für mobile Buhnen

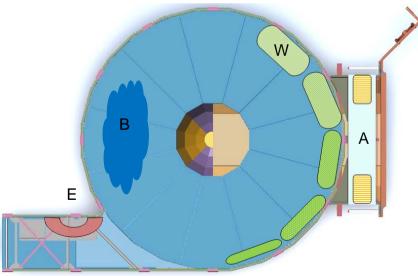
Buhnen werden vor dem Aufbau modellmäßig berechnet, jedoch nicht immer werden sofort die gewünschten Effekte erzielt. Kostspielige Nachplanungs- und Umsetzungsarbeiten sind die Folge.

Durch leicht veränderliche und mobile textile Buhnen sollen diese Nachteile gemindert werden. Nicht nur die Anordnung der Buhnen, sondern auch deren Größe kann mit Hilfe variabler Wasserfüllung an wechselnde Bedingungen angepasst werden.

Textile Buhne im Versuchsfeld

- Polyester Gewebe mit PVC Beschichtung
- Konfektionierung durch Schweißverbindungen
- Modulare Konstruktion durch Reißverschlüsse
- Befestigung am Pontoon

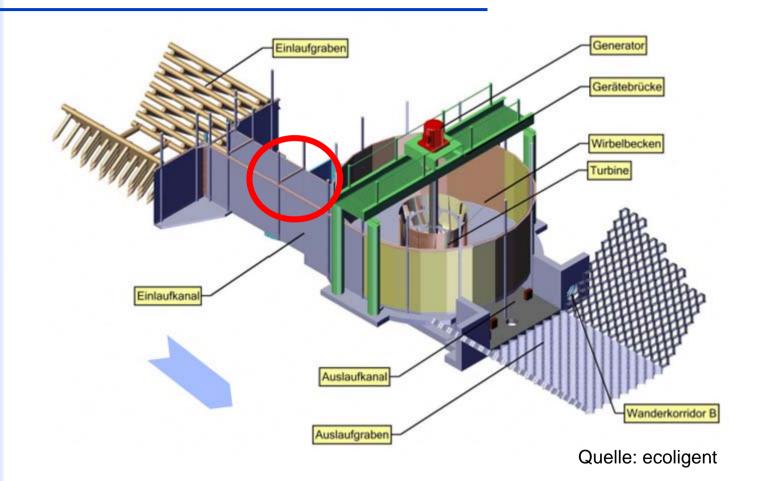
Erhöhung der Fließgeschwindigkeit durch Buhnen, Versuchsfeld: Bode (Neugattersleben)



Textilien für Fischaufstiegshilfen

Projekt: Pneumatisch oder hydraulisch aufblasbare textile Hohlkörper im Ein- und Auslaufkanal sowie im Wirbelbecken zur

- Wasserstandsregelung über sensorisierbare Textilien
- Optimierung von Strömungsgeschwindigkeit und -richtung bei Anströmen der Turbine und Erzeugung einer Lockströmung für Fische
- Anpassung der Kaskade fischfreundliches Wehr an Leitfischart

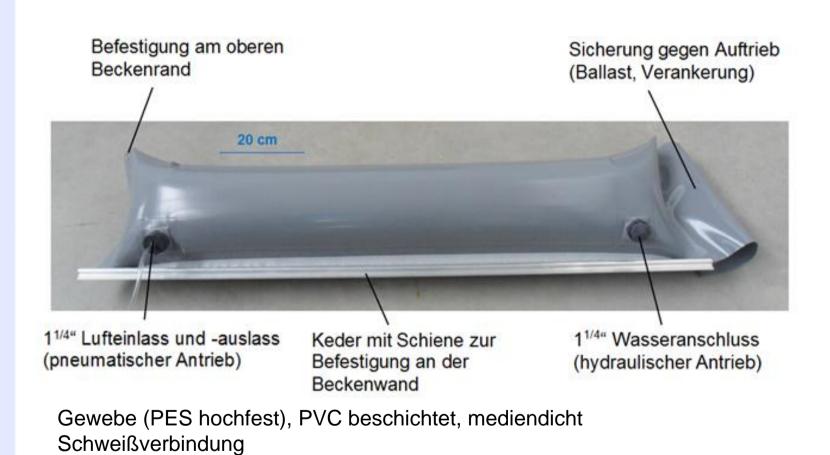

Wärmepumpen (optional)

Strömungsanpassung mittels druckbeaufschlagbaren Textilien im Einlaufkanal (E), an der Wirbelbeckenwand (W) und -boden (B) sowie im Auslaufkanal (A)

Grundriss des fischfreundlichen Wehrs Quelle: Käppler & Pausch GmbH

Fischfreundliches Wehr

Gravitationswirbelkraftwerk mit Fischaufstiegsmöglichkeit



Kederbefestigung

Pneumatisch und hydraulisch befüllbar

Textile Bauelemente als Einlaufregelung

Test der 3D-Textile in der Pilotanlage

Hydraulisch angetriebenes Textil zur Strömungsbeeinflussung im Einlaufkanal

Wirbelbecken mit Turbinenrad im Betriebszustand

Quelle: TU Dresden

Textile Bauelemente – die Lösungen für flexible Module

- Standortangepasste Lösungen durch maßgeschneiderte Konfektionierung
- •Flexibilität erlaubt Formanpassung in weiten Grenzen mit einfachem Regelungskonzept über Binnendruck
- Sehr gute Anpassung an das Sohlsubstrat
- Stufenlose Regelung der Strömungsgeschwindigkeiten
- Schnell aus den Gewässer entfernbar, z. B. bei Hochwasser
- Leicht rückbaubar,
- Geringer Transport- und Montageaufwand (wird vor Ort aufgepumpt)
- Gewichtsreduktion, korrosionsbeständige Werkstoffe
- Als laufende Warenbahn produzierbar, kostengünstig

Ausblick

Quelle: Reuters

Danksagung

Die Forschungsvorhaben 03WKCO1D, 03WKCO3C und 03WKCO4D werden im Rahmen des innovativen regionalen Wachstumskerns "Flussstrom plus" durch das Bundesministerium für Bildung und Forschung gefördert.

VP 3: Technologieentwicklung für kleine Wasserkraftmaschinen

TP 3.3: Reaktive Textilien

Dipl.-Des. (FH) Nora Grawitter

VP 1 Ökoenergiefluss

TP 1.4 Textilstrukturen für mobile Buhne

Dipl.-Des. (FH) Heidi Schaarschmidt, Dr. Hartmut Vorwieger

VP 4: Kaskade fischfreundliches Wehr

TP 4.5: 3D-Textilien in Fischaufstiegshilfe

Dr. Wolfgang Scheibner

Für Fragen stehen wir Ihnen gern zur Verfügung!

Sabine Gimpel

GEFÖRDERT VOM

© 2018 TITV Greiz

