

Horizontal²Wasserrad[®]

Dr.- Ing. Corinna Barthel

Hauptstraße 123 · 39349 Derben

Entwicklungskonzept für kleine Wasserkraftmaschinen

Entwicklungsbedarf

Die Marktuntersuchung stellt heraus, dass der Bedarf an Strömungswasserkraftmaschinen derzeit nicht gedeckt wird bei Standorten mit einer

- Wassertiefe geringer als 50 cm oder
- Gewässerbreite geringer als 5 m oder
- Leistung f
 ür den angefragten Versorgungsfall kleiner 1 kW
- Kleine Flüsse in Deutschland, Europa und weltweit
 - Bode, Altmühl, Werra, Fulda
- o Industriegewässer, Auslauf von Kläranlagen und Talsperren

Entwicklungsbedarf

Die Marktuntersuchung stellt heraus, dass der Bedarf an Strömungswasserkraftmaschinen derzeit nicht gedeckt wird bei Standorten mit einer

- Wassertiefe geringer als 50 cm oder
- Gewässerbreite geringer als 5 m oder
- Leistung f
 ür den angefragten Versorgungsfall kleiner 1 kW
- o Kleine Flüsse in Deutschland, Europa und weltweit
 - Bode, Altmühl, Werra, Fulda
- o Industriegewässer, Auslauf von Kläranlagen und Talsperren

Entwicklungsbedarf

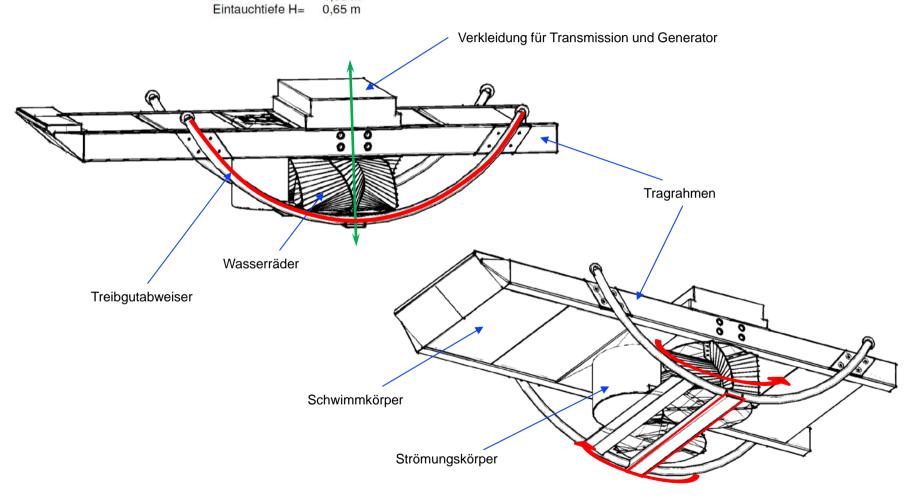
Die Marktuntersuchung stellt heraus, dass der Bedarf an Strömungswasserkraftmaschinen derzeit nicht gedeckt wird bei Standorten mit einer

- Wassertiefe geringer als 50 cm oder
- Gewässerbreite geringer als 5 m oder
- Leistung f
 ür den angefragten Versorgungsfall kleiner 1 kW
- Kleine Flüsse in Deutschland, Europa und weltweit
 - Bode, Altmühl, Werra, Fulda
- o Industriegewässer, Auslauf von Kläranlagen und Talsperren

	Nutzbare Flusskilometer	Anlagen gesamt [Stk]	Umsetzbar nach 5 Jahren [Stk]	Umsatzpotential gesamt [€a]
Deutschland	23.500	842	40	0,8 Mio.
Europa	190.000	4.750	235	4,7 Mio.
Weltweit	5.150.000	34.300	343	6,86 Mio.
Gesamt	5.363.500	39.892	942	18,8 Mio.

Entwickungziel und Anforderungen

- ⇒ Anlage für flache, schmale Fließgewässer
- ⇒ Eingriff in das bestehende Landschaftsbild so gering wie möglich gestalten
- ⇒ Modulare und standardisierte Fertigung
- Einsetzbar bis Wassertiefe von 0,5 m
- Anpassung an schwankenden Wasserstand
- Eignung für Fließgeschwindigkeiten zwischen 1,0-2,5 m/s
- Ökologieverträglichkeit
- Korrosionsbeständige Werkstoffeigenschaften
- Schadlose Treibgutabwehr
- Minimaler Wartungsaufwand für die Generator- und Einspeisetechnik
- Geringes Gewicht der Anlage zum einfachen Transport
- Schnelle und leichte Vorort-Montage
- Unterschiedliche Möglichkeiten zur Verankerung je nach Einsatzort

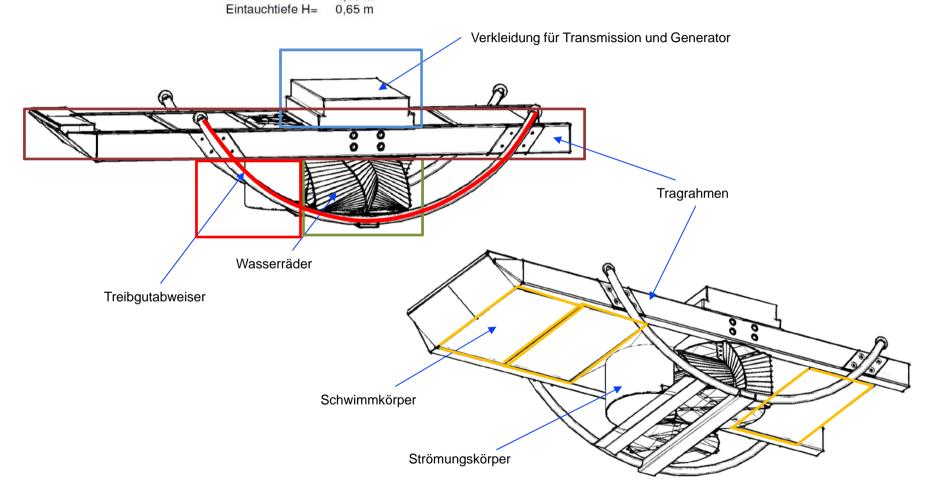


H²W · Horizontal² Wasserrad Entwurf 24.02.2016

Entwurf

Hauptabmessungen:

L= 3,30 m B= 1,60 m



H²W · Horizontal² Wasserrad Entwurf 24.02.2016

Entwurf

Hauptabmessungen:

L= 3,30 m B= 1,60 m

Fertigung

• Standardisierte Profile und korrosionsbeständige Materialien

Fertigung

Materialtests f
ür die Schaufeln

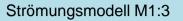
Wasserrad mit AIMG₃- Beschaufelung

Wasserrad mit alternativer GFK- Beschaufelung

Fertigung

• Reduktion der Fertigungszeit für die Schaufeln

Test Formgebung Schaufel



Formgebung durch Tiefziehen

Modellversuche Verankerung

Eingangskriterien:

- Lagesicherheit
- Geringe Störanfälligkeit
- Hochwassersicherheit

Sohlverankerung mittig

Mastverankerung mittig

Mastverankerung seitlich

Ergebnisse:

- Mastverankerung mittig ist schmale Gewässerstandorte geeignet
- Mastverankerung seitlich ist für breite Gewässerstandorte geeignet
- Sohlverankerung ist ungeeignet

Modellversuche Treibgut

- Kategorisiertes Treibgut
- skaliertes Treibgut
- Untersuchung aller Verankerungsvarianten

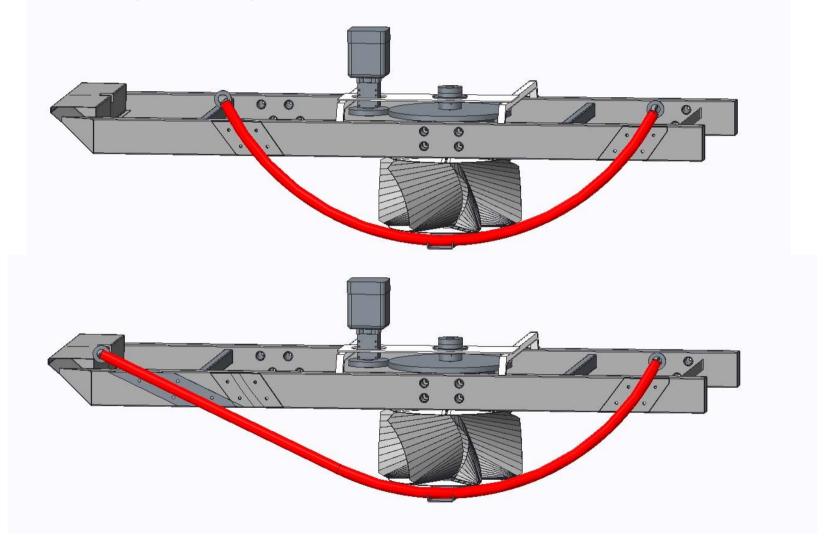
Eingangskriterien:

Treibgutversuch 1

Treibgutversuch 2

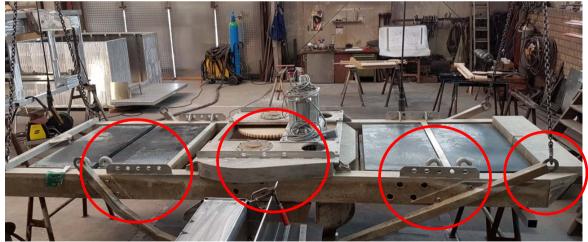
Ergebnisse:

- Treibgut wird in den bevorzugten Verankerungsvarianten schadlos unter dem Gerät hindurch- oder am Gerät vorbei geleitet
- Die Lagestabilität bei Treibgutbelastung ist gewährleistet

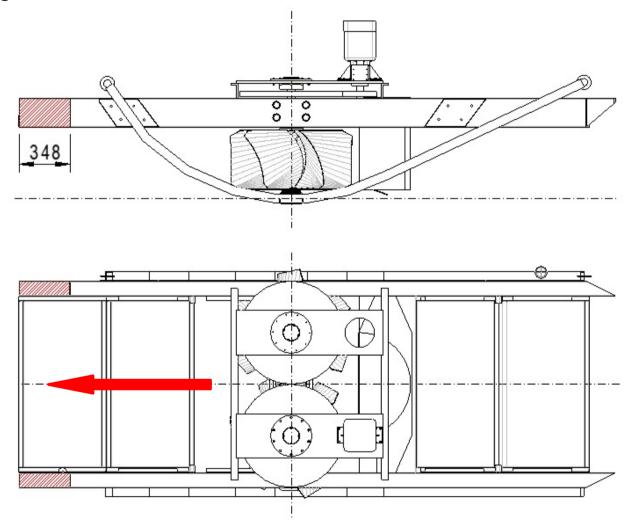


Treibgutversuch 3

• Optimierung der Treibgutabweiser


Optimierung

Optimierung

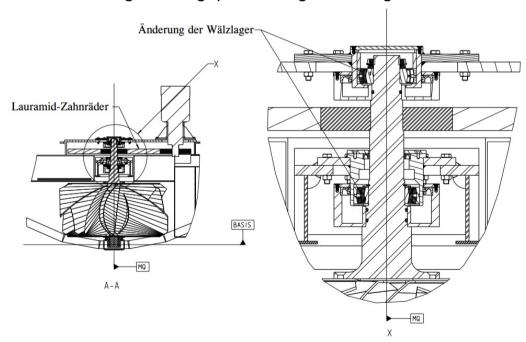


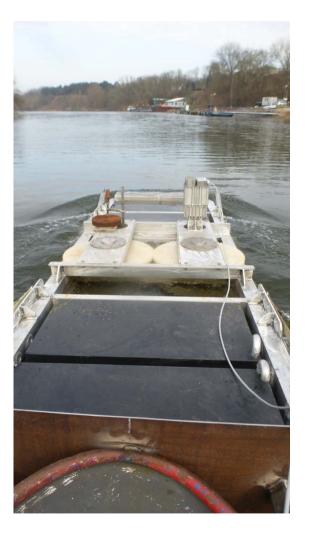
• Optimierung des Trimms

Optimierung

Erste Versuche

Generator: Sinn Power

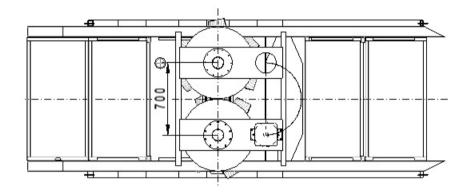

Optimierung

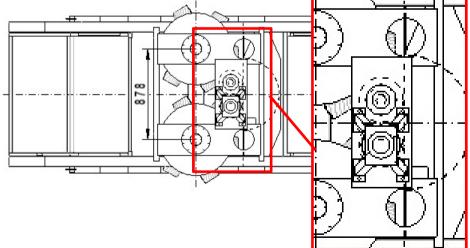

Zahnräder aus Lauramid:

- Gusspolyamid
- Schmiermittelfreier Einsatz
- geringes Gewicht
- Chemikalienresistenz

Änderung der Wälzlagerung

• Pendelrollenlager statt gepaarte Kegelrollenlager





Optimierung

Optimierung des Hebelarms zur Anpassung des Moments und Vergrößerung der Schaufelfläche

- Vergrößerung der Fläche um 5%
- Vergrößerung des Hebelarms um 25%

$$P = \frac{1}{2} \rho \cdot A \cdot v_{w} \cdot v_{w}^{2}$$

$$M = F \cdot r$$

Test am Referenzstandort

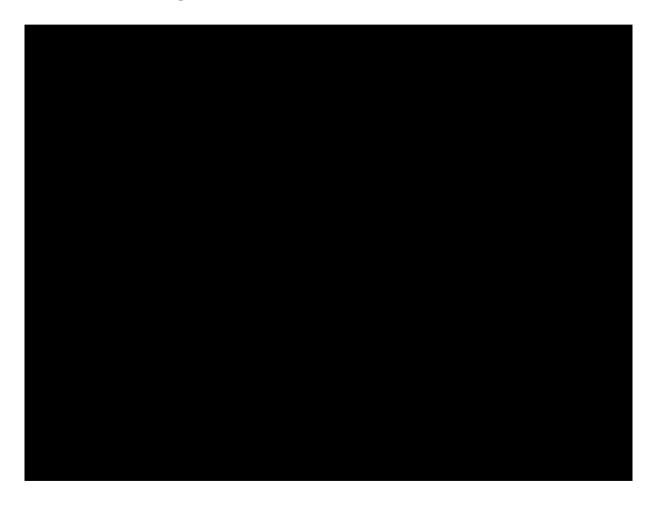
Test am Referenzstandort

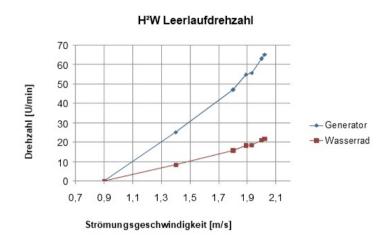
Transversalflussgenerator

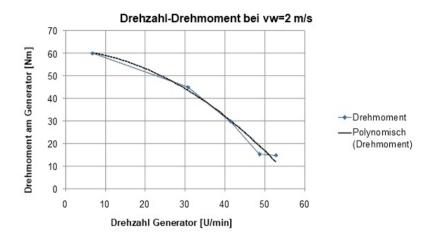
- dreiphasig permanent erregte Synchronmaschine
- Außenläufer
- Vorteil: Getriebe entfällt

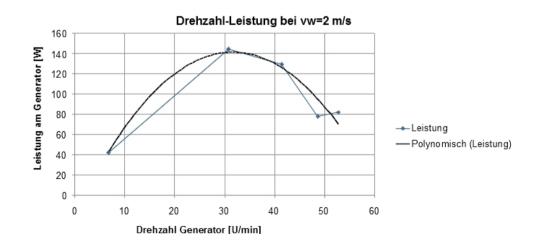
Versuch

• Test auf dem Versuchsträger Vektor




Versuch


• Test auf dem Versuchsträger Vektor



Auswertung

Zusammenfassung und Ausblick

- H²W ist für durch geringen Tiefgang und geringe Abmessungen für kleine Gewässer gut einsetzbar
- gut einsetzbar und auf unterschiedliche Weise verankerbar
- für unterschiedliche Wasserstände geeignet
- Ökologieverträglich
- eignet sich für Strömungsgeschwindigkeit ab 1 m/s
- H²W erfüllt die Anforderungen für die Treibgutabwehr und hat seine Robustheit im Einsatz gezeigt
- Transversalflussgenerator ist f
 ür das H²W gut geeiget
- Verbesserung der Transmission: zwei Lauramidräder mit größerem Druchmesser, Entfall eines Edelstahlrades
- Prüfen der Möglichkeit von zwei Transversalflussgeneratoren an jeweils einem Antriebsstrang
- verlängerter Strömungskörper zur Verbesserung der Anströmung

